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Abstract

Fluid–solid reactions are very important in the chemical and metallurgical process industries. Several models described these reactions such
as volume reaction model, grain model, random pore model and nucleation model. These models give two nonlinear-coupled partial differential
equations (CPDE). When the fluid concentration is high (for example in liquid–solid reactions), the fluid mass balance must be written as an unsteady
equation. There is not any analytical or approximate solution for these equations, due to its complex CPDE. In this work, a new solution technique
(quantized method) has been applied to these unsteady state CPDE. The results of this method (conversion–time profiles) have been compared
with some existing numerical solutions with a good accuracy. Therefore, this method can be used for rapid estimation of kinetic parameters from
experimental data.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Fluid–solid reactions exit in many chemical and metallurgical industries. Some examples for such reactions are reduction of
metallic oxides [1–3], roasting of metal sulfides [4], adsorption of acid gases [5,6], catalyst regeneration [7], phosphoric acid
production [8], leaching processes [9] and active carbon preparation [10].

Reaction engineering of these processes is based on a series of mathematical modeling [11,12]. These models for a porous solid
pellet consist of volume reaction model [13–15], the grain model [16–21], random pore model [22–24] and nucleation model [25,26].
The above-mentioned models give a set of coupled partial differential equations (CPDE). In the liquid reactions or high-pressure
gas–solid reactions, the fluid conservation must be considered as an unsteady equation. Therefore, the unsteady CPDE are very
tedious and must be solved numerically. There is not any analytical or approximate solution for these complex CPDE. In this
work, the unsteady CPDE of the various models have been solved by an incremental analytical (or numerical–analytical) solution
called as quantized method. The quantized method has been applied to the gas–solid reaction models (quasi-steady state equations)
successfully in the previous papers [27–30]. In the present work, the results of this method have been compared with some existing
numerical solutions for the unsteady state case with a good agreement. Therefore, the ability of this method in the unsteady state
problems is also verified.

2. Mathematical modeling

Consider the following fluid–solid reaction:

A(f ) + υBB(s) → C(f ) + υDD(s) (1)

The following assumptions are applied for the porous pellets:
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Nomenclature

a = CA/CAb dimensionless gas concentration
b = CB/CB0 dimensionless solid concentration
CA gas concentration in the pellet
CAb bulk gas concentration
CB solid concentration
CB0 initial solid concentration
De effective diffusivity in the porous pellet
De0 initial effective diffusivity
Dp diffusion coefficient in the product layer
Fg shape factor of the grains
Fp shape factor of the pellet
i position index
j time index
ks surface rate constant
kv volumetric rate constant
M modified Thiele modulus
MB molecular weight of solid reactant
MD molecular weight of solid product
n reaction order with respect to solid
r position of each point in the pellet
rg outlet radius of the grains
rg0 initial grain radius
rgc radius of unreacted core in the grains
r* = rgc/rg0 dimensionless unreacted core radius in the grains
r** = rg/rg0 dimensionless outlet grain radius
R pellet characterization length
S0 reaction surface per unit volume
t time
X solid conversion
y = r/R dimensionless position in the pellet
Z volume change parameter

Greek letters
β = 2ks(1 − ε0)/υBDpS0 product layer resistance in the random pore model
δ dimensionless effective gas diffusivity
ε pellet porosity
ε0 initial pellet porosity
εD porosity of the product layer
θg = υBksCAbMBt/(ρBrg0) dimensionless time in the grain models
θn = υBkvCAbt dimensionless time in the nucleation model
θr = ksS0CAbt/(CB0(1 − ε0)) dimensionless time in the random pore model
θv = υBkvCAbC

n−1
B0 t dimensionless time in the volume reaction model

νB stoichiometric coefficient of solid reactant
νD stoichiometric coefficient of solid product
ρB density of the solid reactant
ρD density of the solid product
σ = R

√
Fgks(1 − ε0)/(De0rg0) Thiele modulus of the grain models

σg = √
ksrg0/(2FgDp) Thiele modulus of the grains

σ̂N = R
√
kvρB(1 − ε)/(2FpDeMB) Thiele modulus of the nucleation model

φr = R
√
ksS0/(υBDe0) Thiele modulus of the random pore model

φv = R
√
kvC

n
B0/De0 Thiele modulus of the volume reaction model

ψ = εCAb/((1 − ε)CB0) accumulation parameter
Ψ random pore model parameter
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(1) The reaction is irreversible and first-order with respect to the fluid concentration. The most of power law or
Langmuir–Hinshelwood kinetics could also be approximated by first-order reactions [11].

(2) The pseudo-steady state approximation (for gas–solid reactions) is not valid for liquid–solid reactions. Therefore the fluid mass
balance is considered as an unsteady state equation.

(3) External mass transfer resistance is negligible for relatively small pellets and at the moderate temperatures.
(4) Bulk fluid concentration is constant at the single pellet systems.
(5) The overall pellet size is constant. In the nonporous pellets, the solid volume change during the reaction causes the pellet size

to change. But in the porous pellets, this effect causes the porosity to change and pellet size usually remains constant.
(6) The bulk flow effect is negligible and system is assumed as equimolar counter-diffusion.
(7) The system is isothermal for relatively low heat of reactions.

Now the differential equations of the various models for the porous pellets at unsteady state case are presented.

2.1. Volume reaction models

The fluid and solid concentration equations with boundary and initial conditions for this model are as follows [31]:

ψφ2
v
∂a

∂θv
= ∂2a

∂y2 + Fp − 1

y

∂a

∂y
− φ2

vab
n (2)

∂b

∂θv
= −abn (3)

y = 0,
∂a

∂y
= 0 (4)

y = 1, a = 1 (5)

θv = 0, a = 0, b = 1 (6)

In the above equations, n is the reaction order with respect to the solid and n = 1 and 1/2 for first and half orders, respectively. Moreover,
Fp = 1 and 3 for slab and sphere pellets geometry. In the half-order reaction, the reaction completion time (θc) is finite and after θc,
two diffusion and diffusion-reaction zones appear. However in the first-order reaction, θc is infinite and only diffusion-reaction zone
exists. By solving the above equations, pellet conversion can be computed as follows:

X(θ) = 1 − Fp

∫ 1

0
yFp−1b dy (7)

2.2. Grain models

The differential equations for the simple grain model are as follows [16]:

ψσ2 ∂a

∂θg
= ∂2a

∂y2 + Fp − 1

y

∂a

∂y
− σ2r∗Fg−1a (8)

∂r∗

∂θg
= −a (9)

In the above equations, r* is the dimensionless radius of unreacted core in each grain and Fg is the grain shape factor (r* = 1 at
time zero). The pellet consists of several fine grains, and two stage reactions (with moving boundary in the second stage between
diffusion and diffusion-reaction zones) exist.

The following equations are for the grain model with the product layer resistance (spherical pellet and grains) [18]:

ψσ2 ∂a

∂θg
= ∂2a

∂y2 + 2

y

∂a

∂y
− σ2r∗2

a

1 + 6σ2
g (r∗ − r∗2 )

(10)

∂r∗

∂θg
= − a

1 + 6σ2
g (r∗ − r∗2 )

(11)

In this case, the product layer resistance around each grain is also considered.
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Finally for the modified grain model (with spherical pellet and grains), the governing equations are as follows [20]:

ψσ2 ∂a

∂θg
= 1

y2

∂

∂y

(
δy2 ∂a

∂y

)
− σ2r∗2

a

1 + 6σ2
g (r∗ − (r∗2

/r∗∗))
(12)

∂r∗

∂θg
= − a

1 + 6σ2
g (r∗ − (r∗2

/r∗∗))
(13)

r∗∗ = [Z + (1 − Z) r∗
3
]
1/3

(14)

Z = υDρBMD

υBρDMB(1 − εD)
(15)

1 − ε

1 − ε0
= r∗∗3

(16)

δ(r∗) = De

De0
=

(
ε

ε0

)2

=
[

1 − 1 − ε0

ε0
(Z − 1)(1 − r∗

3
)

]2

(17)

In this modified grain model, the structural changes due to the reaction are considered. This means, for Z < 1 the grains shrink, and
for Z > 1 the grains expand during the reaction. In the high Z values (for example for CaO + SO2 reaction with Z = 3), the pore mouth
blocking and incomplete conversion may occur. In the grain models, solid conversion is computed as follows:

X(θ) = 1 − Fp

∫ 1

0
yFp−1r∗

Fg
dy (18)

2.3. Random pore model

Random pore model assumes that the porous pellet consist of a series of cylindrical pores with a size distribution. This pore size
distribution determines the parameter Ψ in this model. Moreover, the structural changes (due to various molar volumes of solid
reactant and solid product), and product layer resistance are also considered. The differential equations of unsteady state random
pore model for a spherical pellet are as follows [24]:

ψφ2
r
∂a

∂θr
= 1

y2

∂

∂y

(
δy2 ∂a

∂y

)
− φ2

r ab
√

1 − Ψ ln(b)

1 + (βZ/Ψ )
[√

1 − Ψ ln(b) − 1
] (19)

∂b

∂θr
= − ab

√
1 − Ψ ln(b)

1 + (βZ/Ψ )
[√

1 − Ψ ln(b) − 1
] (20)

2.4. Nucleation model

The nucleation phenomenon usually appears in some of the reactions such as metallic oxides reduction. In this case, the
conversion–time behavior consists of three stages (sigmoidal curve). The differential equations for the nucleation model (n = 3)
and for a spherical pellet are as follows [26]:

ψσ̂2
N
∂a

∂θn
= ∂2a

∂y2 + 2

y

∂a

∂y
− 18σ̂2

Nb[−ln(b)]2/3a (21)

∂b

∂θn
= −3b[−ln(b)]2/3a (22)

3. Solution technique

The above complex-coupled partial differential equations must be solved numerically. In the numerical solution, these partial
differential equations are changed in stepwise elements. This method usually leads to a large set of related algebraic equations. These
equations must be solved simultaneously with large computational time.

In this quantized or incremental method, just opposite of the numerical solution, the independency between parameters is used.
This means that a(j, i) is related to b(j, i) but is independent of b(j − 1, i) or b(j, i − 1), where j and i are the time and position indexes,
respectively. In other words, the variables a, b, θ and y are related to each other on their state of (j, i). Therefore, they are independent
for other states such as (j − 1, i) or (j, i − 1). If one uses b(j − 1, i) instead of b(j, i) for example in Eq. (2) as an approximation,
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some errors of computation are expected. This means that b is treated as a constant between two small time increments in Eq. (2).
In the previous papers, it has been shown that this error is small for the gas–solid reactions with the pseudo-steady state assumption
[27–30]. In the fluid–solid reactions with unsteady state equations (after this approximation in Eq. (2)), it is possible to solve Eq. (2)
analytically for obtaining a or fluid concentration profile in the pellet. Then a is inserted to Eq. (3) and one can compute b or solid
concentration profile by integration of this equation. Therefore by this quantized method, the unsteady-coupled partial differential
equations can be solved analytically for small time increments. This procedure is continued until the final required time. Recently, this
quantized method has been used for decoupling and solving of the governing equations of various gasification models successfully
[32].

Now the final solution equations for the various fluid–solid reaction models (with unsteady state conservation equation) by this
new method are presented.

3.1. Volume reaction models

The solution for the first-order volume reaction model of a slab pellet is as follows:

M = φvb(j − 1, i)1/2 (23)

a = cosh(My)

cosh(M)
+

∞∑
k=1

kπ(−1)k cos(kπy/2)

M2 + (k2π2/4)
exp

[
− (M2 + (k2π2/4))θ

ψφ2
v

]
(24)

b = exp

[
2 − cosh(My)

cosh(M)
θ −

∞∑
k=1

kπ(−1)k cos(kπy/2)

M2 + (k2π2/4)

ψφ2
v

M2 + (k2π2/4)

(
1 − exp

[
− (M2 + (k2π2/4))θ

ψφ2
v

])]
(25)

First-order volume reaction model for a spherical pellet is solved as follows:

a = sinh(My)

y sinh(M)
+

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y
exp

[
− (M2 + k2π2)θ

ψφ2
v

]
(26)

b = exp

[
2 − sinh(My)

y sinh(M)
θ −

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y

ψφ2
v

M2 + k2π2

(
1 − exp

[
− (M2 + k2π2)θ

ψφ2
v

])]
(27)

This means that from initial condition (6) and Eq. (23), the modified Thiele modulus (M) can be computed at each position and
for the first time increment. Then by Eq. (24) or (26) the dimensionless fluid concentration in each position and for the first time
increment is computed. Also in Eq. (25) or (27) the dimensionless solid concentration in each position and for the first time increment
is determined. Now these solid concentrations are inserted to Eq. (23) for computing M at each position and for the second time
increment. This procedure is continued until the final dimensionless time. Finally, the conversion–time profile is determined by Eq.
(7).

In the half-order volume reaction model with slab geometry, the following solution is obtained for the first stage:

M = φvb(j − 1, i)1/4 (28)

a = cosh(My)

cosh(M)
+

∞∑
k=1

kπ(−1)k cos(kπy/2)

M2 + (k2π2/4)
exp

[
− (M2 + (k2π2/4))θ

ψφ2
v

]
(29)

b =
[

1 − cosh(My)

cosh(M)

θ

2
−

∞∑
k=1

(kπ/2)(−1)k cos(kπy/2)

M2 + (k2π2/4)

(
ψφ2

v

M2 + (k2π2/4)

) (
1 − exp

[
− (M2 + (k2π2/4))θ

ψφ2
v

])]2

(30)

For the second stage (θ > θc = 2) the solution is as follows:

θ = 2 +M2(1 − ym)2 + 2M(1 − ym) tanh(Mym) (31)

b =
[

1 − cosh(My)

cosh(Mym)
−

∞∑
k=1

(kπ/2ym)(−1)k cos(kπy/2ym)

M2 + (k2π2/4y2
m)

ψφ2
v

M2 + (k2π2/4y2
m)

(
1 − exp

[
−

(
M2 + k2π2

4y2
m

)
θc

ψφ2
v

])]2

(32)
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Finally for the spherical geometry half-order volume reaction model, the following solution is obtained for the first and second
stages, respectively:

a = sinh(My)

y sinh(M)
+

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y
exp

[
− (M2 + k2π2)θ

ψφ2
v

]
(33)

b =
[

1 − sinh(My)

y sinh(M)

θ

2
−

∞∑
k=1

kπ(−1)k sin(kπy)

(M2 + k2π2)y

ψφ2
v

M2 + k2π2

(
1 − exp

[
− (M2 + k2π2)θ

ψφ2
v

])]2

(34)

θ = 2 + M2

3
(1 − ym)2(1 + 2ym) + 2(1 − ym)[Mym coth(Mym) − 1] (35)

b =
[

1 − ym sinh(My)

y sinh(Mym)
−

∞∑
k=1

(kπ/ym)(−1)k sin(kπy/ym)

(M2 + (k2π2/y2
m))y

ψφ2
v

M2 + (k2π2/y2
m)

(
1 − exp

[
−

(
M2 + k2π2

y2
m

)
θc

ψφ2
v

])]2

(36)

3.2. Grain models

Application of this new solution technique to the unsteady differential equations of the simple grain model (slab pellet) leads to
the following equations:

M = σ
√
r∗Fg−1 (37)

a = cosh(My)

cosh(M)
+

∞∑
k=1

kπ(−1)k cos(kπy/2)

M2 + (k2π2/4)
exp

[
− (M2 + (k2π2/4))θ

ψσ2

]
(38)

r∗ = 1 − cosh(My)

cosh(M)
θ −

∞∑
k=1

kπ(−1)k cos(kπy/2)

M2 + (k2π2/4)

(
ψσ2

M2 + (k2π2/4)

) (
1 − exp

[
− (M2 + (k2π2/4))θ

ψσ2

])
(39)

In the second stage (θ > θc = 1), the following solution is obtained:

θ = 1 + M2

2
(1 − ym)2 +M(1 − ym) tanh(Mym) (40)

r∗ = 1 − cosh(My)

cosh(Mym)
−

∞∑
k=1

(kπ/ym)(−1)k cos(kπy/2ym)

M2 + (k2π2/4y2
m)

(
ψσ2

M2 + (k2π2/4y2
m)

) (
1 − exp

[
−

(
M2 + k2π2

4y2
m

)
θc

ψσ2

])
(41)

For the spherical geometry, the following solution is obtained for the first and second stages, respectively:

a = sinh(My)

y sinh(M)
+

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y
exp

[
− (M2 + k2π2)θ

ψσ2

]
(42)

r∗ = 1 − sinh(My)

y sinh(M)
θ −

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y

ψσ2

M2 + k2π2

(
1 − exp

[
− (M2 + k2π2)θ

ψσ2

])
(43)

θ = 1 + M2

6
(1 − ym)2(1 + 2ym) + (1 − ym)[Mym coth (Mym) − 1] (44)

r∗ = 1 − sinh(My)

y sinh(Mym)
θ −

∞∑
k=1

(2kπ/ym)(−1)k sin (kπy/ym)

(M2 + (k2π2/y2
m))y

ψσ2

M2 + (k2π2/y2
m)

(
1 − exp

[
−

(
M2 + k2π2

y2
m

)
θc

ψσ2

])
(45)

In the grain model with product layer resistance, the solution in the first stage for a spherical pellet and spherical grains is as follows:

M = σ

√√√√ r∗2

1 + 6σ2
g (r∗ − r∗2 )

(46)
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a = sinh(My)

y sinh(M)
+

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y
exp

[
− (M2 + k2π2)θ

ψσ2

]
(47)

r∗ + 3σ2
gr

∗2 − 2σ2
gr

∗3 = 1 + σ2
g − sinh(My)

y sinh(M)
θ −

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y

ψσ2

M2 + k2π2

(
1 − exp

[−(M2 + k2π2)θ

ψσ2

])
(48)

In the second stage (θ > θc = 1 + σ2
g ), the following solution is obtained:

θ

1 + σ2
g

= 1 + M2

6
(1 − ym)2(1 + 2ym) + (1 − ym)[Mym coth(Mym) − 1] (49)

r∗ + 3σ2
gr

∗2 − 2σ2
gr

∗3 = 1 + σ2
g − ym sinh(My)

y sinh(Mym)
θc −

∞∑
k=1

(2kπ/ym)(−1)k sin(kπy/ym)

(M2 + (k2π2/y2
m))y

ψσ2

M2 + (k2π2/y2
m)

×
(

1 − exp

[
−

(
M2 + k2π2

y2
m

)
θc

ψσ2

])
(50)

In the modified grain model, the solution for a spherical pellet and spherical grains in the first stage is as follows:

M = σ

√√√√ r∗2

[1 + 6σ2
g(r∗ − (r∗2

/r∗∗))]δ(r∗)
(51)

a = sinh(My)

y sinh(M)
+

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y
exp

[
− (M2 + k2π2)θ

ψσ2/δ

]
(52)

r∗ + 3σ2
gr

∗2 + 3σ2
g

Z − 1
[Z + (1 − Z)r∗

3
]
2/3

= 1 +
(

3 + 3

Z − 1

)
σ2

g − sinh(My)

y sinh(M)
θ −

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y

ψσ2/δ

M2 + k2π2

(
1 − exp

[
− (M2 + k2π2)θ

ψσ2/δ

])
(53)

In the second stage (θ > θc = 1 + 3σ2
g + (3σ2

g/(Z − 1))(1 − Z2/3)), the following solution is obtained:

θ

θc
= 1 + M2

6
(1 − ym)2(1 + 2ym) + (1 − ym)[Mym coth (Mym) − 1] (54)

r∗ + 3σ2
gr

∗2 + 3σ2
g

Z − 1
[Z + (1 − Z)r∗

3
]
2/3

= 1 +
(

3 + 3

Z − 1

)
σ2

g − ym sinh(My)

y sinh(Mym)
θc −

∞∑
k=1

(2kπ/ym)(−1)k sin(kπy/ym)

(M2 + (k2π2/y2
m))y

ψσ2/δ

M2 + (k2π2/y2
m)

×
(

1 − exp

[
−

(
M2 + k2π2

y2
m

)
θc

(ψσ2/δ)

])
(55)

3.3. Random pore model

The solution for unsteady state random pore model for a spherical pellet and negligible product layer resistance is as follows:

M = φr

√
b
√

1 − Ψ ln(b) (56)

a = sinh(My)

y sinh(M)
+

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y
exp

[
− (M2 + k2π2)θ

ψφ2
r

]
(57)
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Ψ ln(b) = 1 −
{

1 + Ψ

2

[
sinh(My)

y sinh(M)
θ +

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y

ψφ2
r

M2 + k2π2

(
1 − exp

[
− (M2 + k2π2)θ

ψφ2
r

])]}2

(58)

3.4. Nucleation model

The solution for the unsteady nucleation model with n = 3 and for a spherical pellet is as follows:

M = σ̂N

√
18b[−ln(b)]2/3 (59)

a = sinh(My)

y sinh(M)
+

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y
exp

[−(M2 + k2π2)θ

ψσ̂2
N

]
(60)

b = exp

⎡
⎣−

[
sinh(My)

y sinh(M)
θ +

∞∑
k=1

2kπ(−1)k sin(kπy)

(M2 + k2π2)y

ψσ̂2
N

M2 + k2π2

(
1 − exp

[
− (M2 + k2π2)θ

ψσ̂2
N

])]3
⎤
⎦ (61)

4. Comparison of results

The conversion–time profile for the first-order volume reaction model (slab pellet) and ψ = 0.1 is presented in Fig. 1 and is
compared with orthogonal collocation solution of Ref. [31]. The comparison for half-order volume reaction model of the slab pellet
with numerical solution of Ref. [15] is presented in Fig. 2. Fig. 3 is the similar comparison with Ref. [15] for the half-order volume
reaction model in a sphere pellet. As these figures show, there are a good agreement between the quantized solution and numerical
solution especially for low and intermediate Thiele modulus. However at high Thiele modulus or diffusion control regime (with the
resulting steep concentration gradients in the pellet) the approximation of using b(j − 1, i) instead of b(j, i) in Eq. (2) introduces
more errors.

The effect of unsteady state parameter (ψ) in the conversion–time behavior of half-order volume reaction model for a spherical
pellet (with φ = 5) is presented in Fig. 4. As Fig. 4 shows, for ψ > 0.1 the pseudo-steady state approximation is not valid and the
unsteady state equations must be used.

The conversion–time profiles for the simple grain model with sphere pellet and for spherical and cylindrical grains are presented
in Figs. 5 and 6, respectively. The grain model with product layer resistance, and modified grain model (with Z = 1.5) are presented in
Figs. 7 and 8, respectively. The modified grain model behavior for high Z values is presented in Fig. 9, which shows the pore closure
and incomplete conversion. The comparison for unsteady state random pore model (ψ = 0.5) with Ref. [24] is presented in Fig. 10
with a good accuracy. Finally the comparison for the nucleation model (n = 3) with Ref. [26] is presented in Fig. 11 successfully.

The actual value of the calculations of this work in comparison with the literature data are presented in Tables 1–4 for
Figs. 1, 3, 10 and 11, respectively.

Fig. 1. Comparison of results of this work and orthogonal collocation of Ref. [31] for slab pellets, ψ = 0.1.
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Fig. 2. Comparison for half-order reaction model of the slab pellets with numerical solution of Ref. [15], ψ = 0.1.

Fig. 3. Comparison for half-order reaction model of the spherical pellets with numerical solution of Ref. [15], ψ = 0.1.

Table 1
Comparison of results of this work and orthogonal collocation of Ref. [31] for slab pellets, ψ = 0.1

Dimensionless time, θ Solid conversion, X

Quantized solution,
φv = 1

Three-point collocation,
φv = 1

Quantized solution,
φv = 10

Three-point collocation,
φv = 10

2 0.823 0.826 0.139 0.144
3 0.938 0.933 0.185 0.197
4 0.979 0.982 0.221 0.239
5 0.995 0.999 0.249 0.280
6 0.997 1 0.273 0.315
8 1 1 0.311 0.377

10 1 1 0.339 0.431
12 1 1 0.365 0.474
14 1 1 0.383 0.515
16 1 1 0.399 0.551
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Fig. 4. Effect of unsteady state parameter (ψ) in the conversion–time behavior of half-order volume reaction model for spherical pellet, φ = 5.

Fig. 5. Conversion–time profiles for the simple grain model with sphere pellets and sphere grains, σ̂ = σ/
√

2FpFg.

Table 2
Comparison for half-order reaction model of the spherical pellets with numerical solution of Ref. [15], ψ = 0.1

Dimensionless time, θ Solid conversion, X

Quantized solution,
φv = 1

d–l solution,
φv = 1

Quantized solution,
φv = 5

d–l solution,
φv = 5

Quantized solution,
φv = 10

d–l solution,
φv = 10

0.2 0.164 0.174 0.069 0.082 0.031 0.041
0.4 0.331 0.346 0.162 0.187 0.084 0.095
0.6 0.480 0.495 0.251 0.277 0.130 0.146
0.8 0.601 0.628 0.328 0.349 0.184 0.182
1 0.724 0.733 0.423 0.423 0.241 0.223
2 0.999 1 0.769 0.697 0.436 0.392
4 1 1 0.936 0.941 0.600 0.621
6 1 1 1 1 0.692 0.751
8 1 1 1 1 0.756 0.833

10 1 1 1 1 0.815 0.908
20 1 1 1 1 0.962 1
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Fig. 6. Conversion–time profiles for the simple grain model with sphere pellet and cylindrical grains, σ̂ = σ/
√

2FpFg.

Fig. 7. Conversion–time profiles for grain model with product layer resistance for reduction of barium sulphate with methane gas.

Table 3
Comparison for unsteady state random pore model (ψ = 0.5) with Ref. [21]

Dimensionless time, θ Solid conversion, X

Quantized solution Numerical solution Composite solution PSS solution

0.5 0.245 0.248 0.247 0.306
1.0 0.488 0.483 0.475 0.552
1.5 0.698 0.673 0.663 0.734
2.0 0.859 0.814 0.807 0.860
2.5 0.956 0.905 0.901 0.934
3.0 0.976 0.941 0.939 0.963
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Fig. 8. Conversion–time profiles for modified grain model with Z = 1.5, ψ = 0.1.

Fig. 9. Modified grain model behavior for high Z values (CaO + SO2 system), ψ = 0.1.

Fig. 10. Comparison for unsteady state random pore model (ψ = 0.5) with Ref. [21].
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Fig. 11. Comparison for the nucleation model (n = 3) with Ref. [26], ψ = 0.1.

Table 4
Comparison for the nucleation model (n = 3) with Ref. [26], ψ = 0.1

Dimensionless time, θ Solid conversion, X

Quantized solution Sohn solution

0.4 0.031 0.051
0.6 0.105 0.143
0.8 0.213 0.292
1.0 0.346 0.459
1.2 0.492 0.621
1.4 0.636 0.752
1.6 0.772 0.872
1.8 0.869 0.936
2.0 0.931 0.962

5. Conclusion

In this paper the fluid–solid reactions with their unsteady state differential equations were considered. There is not any analytical
or approximate solution for these equations due to the complex-coupled partial differential equations. In this work, a new solution
technique (quantized method) has been used for the fluid–solid reactions. Comparison of the results of this work with some existing
numerical solutions showed good agreements. Therefore, this method can be applied for the rapid estimation of model parameters
from the experimental data with reduced computational effort.
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